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AT present it is impossible to calculate the physical properties of matter 
from first principles. Quanta1 calculations of the forces acting between 
molecules are not sufficiently accurate; and, moreover, only in a few 
simple cases can the methods of statistical mechanics give the exact depend- 
ence of the physical properties on such forces. A purely empirical approach 
is no more successful, for the relation between two different properties is 
generally too subtle for empirical correlations alone to be useful. The 
study of intermolecular forces, and the molecular theory of the properties 
of matter, have therefore proceeded along the following lines. First classical 
and quanta1 calculations have been used as a guide to the probable depend- 
ance of the forces on the separation of the molecules, and, if relevant, on 
the angles which define their mutual orientations : an expression for the 
potential-energy curve may then be deduced which is approximately of 
the correct shape but contains several unknown parameters. Secondly, 
the physical properties of a substance formed from these idealised molecules 
are calculated by the methods of equilibrium statistical mechanics, anti 
that part of non-equilibrium statistical mechanics which is usually called 
" kinetic theory ". Thirdly, these calculated properties are compared 
with those observed to find out if the assumed model is adequate and, 
if so, what are the best values of the unknown parameters. Very often 
it is found that one property may be accounted for by a variety of inter- 
molecular potentials and so it is necessary t o  make the conipaisons between 
theory and experiment as wide as possible. Different properties test 
different aspects of a potential ; and a potential which will satisfy many 
properties is probably close to  reality. The object, then, of the work 
reviewed here has been first to find the intermolecular potential energies 
and then to use them to correlate as many physical properties as possible. 
Only measurements on simple systems, where quantitative comparison of 
theory and experiment can usually be made, are discussed. Topics omitted 
include the properties of metals, all systems in which there are highly 
specific forces, and those properties which depend primarily on the rate of 
exchange of internal energy. 

London1 and Margenau2 have reviewed theoretical calculations of the 
attractive forces between molecules. Standard works3, on the use of 
statistical mechanics for the calculation of the equilibrium properties of 

*London, Trans. Paraday SOC., 1937, 33, 8. 
2 Margenau, Rev. Mod. Physics, 1939, 11, 1. 
3 Fowler and Guggenheim, " Statistical Thermodynamics ", Cambridge Univ. Press, 

4 Mayer and Mayer, " Statistical Mechanics ", Wiley, 19.10. 
1939. 
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matter have recently been suppleniciited by a review by de Boer.5 A fortli- 
coniing book by Hirschfelder, Curtius, and Bird will treat exhaustively 
many of the topics discussed below. 
describes specific forces of all kinds, and Davies,s Kellner,s and Donohue lo 

have reviewed different aspects of the hydrogen bond. 

Of the omitted topics, Brieglieb 

The Intermolecular Forces 
It is a simple deduction from the properties of matter that two molecules 

attract each other a t  large distances and repel each other a t  short distances. 
It is therefore convenient to represent their potential energy as the sum of 
two sets of terms, one negative and one positive. The positive terms, due 
to the overlap and hence the repulsion of the electron clouds, are shown 
by quanta1 calculations to be of the form F ( T ) ~ - ~ ~  at the comparatively 
large distances a t  which intermolecular forces are important. Here F(r)  
i:, a polynomial in r, the separation of the molecules, and A is a constant. 
‘I’his energy increases rapidly with decreasing r and is numerically the same, 
though of opposite sign, as the energy which would lead to chemical com- 
bination, if the Pauli principle permitted this. The negative terms in the 
energy may be of several kinds. If the molecules are not symmetrical 
then there is the classical electrostatic energy between their two charge 
distributions. This may be expressed exactly as an infinite series in inverse 
powers of r .  The series converges as long as the charge distributions do 
not overlap-a condition which is always satisfied. If there are no ions 
present then the first term in this series, and generally much the largest, 
is the term in r3, which is the energy of interaction of the two “point 
dipoles ” of the charge distributions. Higher terms (r4, r5, etc.) depend 
on the details of the charge distributions. All the terms vanish when 
averaged over all orientations. However, a Boltzmann factor, eeEIkT is 
larger for negative than for positive energies and so a statistical average 
of such energies will always be negative leading to a net attractive force. 
As well as these direct interactions there is a negative contribution to the 
energy from the interactions between the permanent moments of one 
molecule and the moments induced in the other. These energies vary as 
the square of the corresponding direct term and so their leading term is 
iii r6. Finally there 
are terms from the polarisation of one molecule by the other due to the 
rapidly oscillating moments of electron clouds. These energies may also 
be expressed as series of even powers starting with r6 : they can only be 
described by the methods of quantum mechanics and were first investigated 
by London Their importance 

Generally they contribute little to the total energy. 

who named them “ dispersion ” energies. 

do Boer, Rep. Progr. Physics, 1949, 12, 305. 
“Molecular Theory of Gases and Liquids ”, Wiley, to  be published. 

Devies, Ann. Reports, 1946, 43, 5. 
Kollner, Rep. Progr. Physics, 1952, 15, 1. 

l*Donohue, J. Phys. Chem., 1952, 56, 202. 
l1 London, 2. physikal. Chem., 1930, B, 11, 222. 

7 Brieglieb, “ Zwischenmolekulare Kraf‘te und Molekdstruktur I ,  Stuttgart, 1937, 
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is threefold. First, they are present in all interactions between atoms and 
inolecules and so can account for the existence of attractive forces between 
spherically symmetrical molecules. Secondly, they are additive and, for 
simple molecules, depend little on orientation. By " additive " is meant 
that the total energy of an assembly of N simple molecules is, to a very 
good approximation, the sum of the energies of the N ( N  - 1)/2 molecular 
pairs taken separately. Hence such energies can account for the cohesion 
of argon atoms in a crystal where each atom has twelve nearest neighbours. 
Neither dipole-dipole nor valency forces could account for such a structure. 
Thirdly, the dispersion energy is usually the largest of the negative terms. 
London and Brieglieb 7 give tables of the approximate sizes of the three 
negative terms for the interaction of various pairs of molecules. 

All these attractive terms are small compared with the energies of 
chemical bonds, and their calculation is often very difficult. For example, 
the original treatment of the forces between atoms by Heitler and London 
fails to show the existence of the dispersion forces a t  all. These appear 
only when a more exact treatment is made. The precautions which are 
necessary if one treatment is to give good values for both the valency forces 
and the dispersion forces were shown by the calculation by Hirschfelder 
and Linnett12 of the energy of interaction of two hydrogen atoms. They 
used a complicated wave-function which gives a reasonable value of the 
energy a t  all separations. If the spins of the two electrons are anti-parallel 
then the atoms may unite to  form a stable molecule, for which, with their 
wave-function, the energy curve has a minimum of 98,000 cal./mole a t  a 
separation of 0.761 8. If the spins are parallel then there is a shallow 
minimum due to  the dispersion energy. This is only 7-4 cal./mole deep 
at a separation of 4.47 8. The difference between the two minima, both 
in depth and position, is here unusually great, but the example illustrates 
the difficulty of calculating directly the small energy differences which 
produce the forces between molecules whose valency requirements are 
saturated. 
A most useful approximation for the dispersion energy has been derived 
by Slater and Kirkwood :13 probably its most accurate form is 

Less accurate calculations have been made for larger atoms.2, 

where p is the number of electrons in the outer shell, a, is the Bohr radius 
of the hydrogen atom (0.529 A), a is the polarisability of the atom, and 
e is the electronic charge. This simple result may be tested by comparing 
the attractive fields of neon, argon, krypton, and xenon. Equation (1) 
requires that rn, the coefficient of rv6, is proportional to a3/2. Fig. 1 shows 
a graph of log m against log a. It is almost a straight linc whose mean 
slope is 1.69, rather larger than this approxiniate theory would require. 
The absolute magnitudes of m cannot be determined very accurately, but 
it is found that equation (1) predicts energies of about the right size. An 

l 2 Kirschfelder arid Linnett, J .  C h ~ m .  Phys., 1960, 18, 130. 
13 Xlater and Kirkwood, Phys. Review, 1931, 37, 682 ; Kirkwood, Physikal. Z., 

1932, 33, 5 7 ;  Hellman, Acta Physicochim, U.R.S.X., 1935, 2, 273. 
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illustration of the distances at  which these attractive forces are balanced 
by the repulsive forces is provided by Fig. 2, where the intermolecular 
energy curve is cornparGd with the radial electron distribution within the 
~ t t0m. l~  It is seen that the atoms repel each other as soon as there is any 

Log,,, a 
FIG. 1 

The variation of rn, the coeflcient of the dispersion energy, with a, the polarisability, in 
the rare gases. (Arbitrary units.) 

I I I I 

FIG. 2 
The intermolecular energy of the pairs A-A (upperjgures i n  the scale) and Kf-C1- (lower 
figures in the scale). The A-A energy i s  compured with the radial electron distribution 
within a n  argon atom. The horizontal scale of the latter has been doubled so that the nautual 
overlap at any separation i s  given correctly. 1, 2, and 3 show the three completed electron 

0 1 2 A 3  4 5 

shells. The distance cr is commonly called the collision diameter of argon. 

overlapping of their outer shells. (The absolute values of the ‘‘ collision 
diameter ” and depth of the intermolecular energy shown in Fig. 2 can be 
determined much more accurately than the coefficient of the rd6 term.) 

Margenau l5 and 
de Boer l 6  have both calculated the energy of interaction of two hydrogen 

Few calculations have been made for molecules. 

1 4  See Codson, ‘‘ Valence ”, Oxford Univ. Press, 1952, p. 38. 
l5 Margenau, Phys. Review, 1943, 63, 131, 385. 
16de Boer, Physica, 1942, 9, 363. 

M 



172 QUARTERLY REVIEWS 

molecules as a function of their orientation, and, as would be expected, 
they find that the total energy behaves roughly as if it arose from thc 
interaction of two " sources " extended along tlie axes of the molecules. 
That is, for a given separation of the centres, the negative value of the energy 
is greater when the molecules are parallel than when they are perpendicular, 
and greater when they are perpendicular than when they are co-linear. 
In  polyatomic molecules it is often assumed that a substantially correct 
representation of the field may be obtained by regarding each atom as 
a separate centre of attractive and repulsive f0rces.l' Though an over- 
simplificatiozj, such a treatment is undoubtedly more accurate than the 
assumphn that a polyatomic molecule is a point-centre of force. This 
simp15 representation is not possible, however, if the molecules have 
conjugated double bonds. Coulson and Davies l8 have shown that the 
dispersion energy between the n-electrons of polyenes is proportional to  
r6 only a t  large separations. At shorter distances it varies as a lower 
power of r and depends, in no simple way, on the orientation of the 
molecules. 

An empirical potential which is roughly of the form suggested by these 
quanta1 calculat!ions, and yet is easy to manipulate, is the inverse power 
potential 

often called the Lennard- Jones potential. This is more conveniently 
written, not in terms of the parameters rn and n, but of new parameters, 
(T and E ,  with the dimensions of distance (expressed in A) and energy (ex- 
pressed in ergs/molecule, cal ./mole, or, often more conveniently, by 
expressing the quotient Elk in OK). 

E(r)  = m - 1 2  - mr-6 , * (2) 

In  terms of these parameters, 

E(r)  == 4 ~ [ ( a / r ) ~ ~  - ( ~ j r ) ~ ]  , (3 )  
This is the potential drawn for argon in Fig. 2 .  The choice of the P'-6 term 
for the attractive energy is obvious but the choice of the r-12 term needs 
some justification. An exponential repulsion would be more accurate and 
a few calculations have been based upon l9 However, it is difficult 
to handle mathematically, and, as is shown below, the simpler form of 
equation (3) is a satisfactory representation of the tot'al potential as long 
as the kinetic energy of the molecules is not very high. This restriction is 
satisfied for the physical properties discussed below but not, for example, 
in '' molecular beam " experiments. From thcse it nray be shown that 
the energy of repulsion at very small separations may not be obtained by 
extrapolating either a twelfth power or an exponential term from distances 
near that of minimum energy.?O 

Corner, Proc. Roy. Soc., 1948, A,  192, 275 ; Trappeniers, Physicu, 1351, 17, 601 ; 
Rowlinson, J .  Chena. Phys., 1952, 20, 337 ; Thomaes, J .  Chim. plzys., 1952, 49, 323. 

Coufson and Davies, Trans. Faraday Soc., 1952, 48, 777. 
Is Buckingham, Proc. Roy. Xoc., 1938, A ,  168, 264 ; Buckingham arid Corner, ibid., 

2o Berry, Phys. Review, 1949, 75, 913 ; Amdur, Darenport, and Kelle, J .  Chena. 
1947, A ,  189, 118. 

PIays., 1950, 18, 525. 
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The !Fbree States of Matter 
Possibly the most obvious question to ask of statistical mechanical 

theory is whether it can show that matter composed of simple spherical 
molecules is capable of existing in three phases-gas, liquid, and solid. 
The answer is that it cannot. The whole question of changes of phase is 
little understood.21 Certain hypothetical problems in one or two dimensions 

FIG. 3 
The equation of state of a simple substance, as a surface in the three dimensions of presswe, 
volume, and temperature. AB is  the vapour pressure curve of the solid. 
The slope of AE' shows the compressibility of the d i d  at absolute zero. The line BCE 
is at the triple-point pressure and temperature, and the letters show, respectively, the volumes 
of the solid, l@uid, and CD is the vapour pressure and d e d y  of the 
liquid, and ED the density of the coexistent gas. These meet at D, the gas-liquid critkul 
point. I t  is not known $ the curves BH and CC meet at a liquid-solid critical point. 
The shape of the surface k shown by the is0ther.m~ (continuous lines), and by three isobar8 

( h h e d  lines), one beluw, one at, and one above the critical pressure. 

(Not to scale.) 

at thk point. 

may be solved, but a complete treafment of the possible phases of a three- 
dimensional assembly is still impossible. This is the more to be regretted 
a,s experiments so fas made do not settle beyond doubt the nature of the 
transition either at the condensation of a gas to a liquid or at the freezing 
of a liquid to a d i d .  Fig. 3 shows schematically the equation of state of a 

11 see, e.g., " Les changements de phases", Colloquium of the Socihtb de Chimie 
Physique, Paris, 1962. 
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simple substance, as a surface in the three diiizensioiis of pressure, volume, 
and temperature. The gross features of this surface are easy to find by 
experiment, but the finer features, such as the curvature near the transition 
points, are not easily determined. It is seen that fhe lines separating the 
‘‘ gas ” surface asnd the ‘‘ liquid ” surfa’cc converge as tho temperature is 
raised, finally meeting at tihe gars-liquid critical point. Above that tcmpera- 
ture there is no transition, that is, no discontinuity, oil the fluid surface. 
Neither theory nor experiment has yet been able to show whether there is a 
liyuid-solid critical point. It is riot known whether the lines jn Fig. 3 
forming the step which separates the “ solid ” surface from the “ liquid ” 
converge and meet a t  sufficiently high temperatures and pressures. The 
present indications are that they do not. It seem3 that the solid phase, 
which is resistant to shear and has “ long-range order ”, differs fundamentally 
from the fluid phases, which have neither of these properties. For example, 
solid helium is stable at a temperature of ten times the gas-liquid critical 
temperature, under a pressure of 3000 times the critical pressure.22 

The exact nature of the gas-liquid critical point is also unsettled. Simple 
empirical equations of state, such as that of van der Waals, define the 
critical point as that point on the P, V ,  T surface where 

Everywhere above this temperature ( ~ P / ~ V ) T  is negative. Below this 
temperature two phases can exist together. Fifteen years ago careful 
experiments 23  seemed to show that there was a small region above the 
temperature a t  which tlhe phase boundary disappeared, in which (Wja V)T 
was still zero. based 
on the behaviour of the partition function of a gas a t  its condensation point. 
However, there has recently been much painstaking work z4 on the shape 
of the isothernis near the critical point, which does not, on the whole, 
support this view. The effect of gravity is thought to have vitiated some 
of the earlier work. Immediately above the critical point the fluid contains 
clusters of very large numbers of molecules. This is shown directly by 
measurelhents of the light scattered by such a fluid.25 These clusters tend 
to settle out to the bottom of the tube and so produce pressure and density 
gradients which affect the shape of the observed isotherms. Schneider 
and Weinberger 24 have shown that the shorter the tube containing the 
fluid, the closer its properties conform to the classical picture of the critical 
point. It is still uncerbain, however, whether the third and higher deriva- 
tives of equation (4) may not vanish just at the critical point. 

Two substances are said to obey the principle of corresponding states if, 
by choice of suitable units of P, V ,  and T, their equations of state (the 

This result was supported by theoretical arguments 

22 Holland, Hnggill, Jones, and Siinon, Na tu re ,  1960, 163, 148 ; Domb, Phil. Mag., 

2 s  Maass, Clhenz. Beviem, 1938, 23, 17. 
24  Beattie, Douslin, and Ikwine, J. Chem. Phys., 1951, 19, 9.18, and earlier papers ; 

Seheider and Weinberger, Canad. J. Chew,  1952, 30,422, 815, 847, and earlier papers. 
25 Cataldi and Drickamer, J .  Chena. Phys., 1950, IS, 650 ; Babb and Drickamer, 

ibid., p. 655. 

1951, 42, 1316. 
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surfaces of Fig. 3) may be made to coincide. This principle has been one 
of the most fruitful concepts which has come from the work of van der 
Waals. However, its usefulness really dates from Pitzer’s a6 simple deriva- 
tion, from classical statistical mechanics, of the fact that all substances 
conform to this principle if their intermolecular energies can be expressed 
in the form 

where cii and oii are two constants, an energy and a distance, which char- 
acterise the interaction of two niolecules of species i ,  and where f denotes 
a function of (u/r)  which is the same for all species. [Equation (3) is a 
special case of equation ( S ) . ]  The rare gases, except helium, conform very 
closely to the principle of corresponding state and. so their potential energies 
must be related by an equation such as (5). Small deviations from this 
principle are shown by morc! complicated molecules.27 The size o€ the 
deviations can often be quantitatively related to the departure of the 
intermolecular potential from the form of equation (51, and this gives us a, 
way of investigating molecular shapes as well as sizes.28 I3eliunz and 
hydrogen show deviations which cannot be explained by the departure of 
their potentials from the form of equation ( 5 ) .  Such deviations occur with 
light molecules for which quantal effects are important. B j ~ l r , ~ ~  and more 
recently de Boer and others,30 have shown that the divergence between 
classical and quantal behaviour is proportional t o  a dimensionIes9 para- 
meter A, defined by 

* (6) 
where h is Plancb’s constant and m is the mass of the molecule. This 
parameter has been used to predict 30 the properties of 3He from those of 
*He, and the properties 31 of the isotopes of hydrogen from those of normal 
hydrogen. Subsequent measurements 32 of the vapour pressure of 3He 
confirmed the calculations. The properties of the hydrogen isotopes 33 

did not agree exactly with those calculated, probably because of a, siniul- 
taneous departure of the energy from the form of equation (5). Very much 
greater deviations from the principle of corresponding states are shown by 
highly polar substances such as ammonia and water. At present little can 
be said about these. 

Imperfect Gases.-Only at low densities do real gases obey the equation 
of state, PV = RT. Departures from this, the equation of perfect gases, 
is shown in Fig. 3 as a departure of the isotherms from the shape of rectan- 
gular hyperbola. However, this is not a convenient representation, and 
Fig. 4 shows PV/RT as a function of ( l /V),  the molar density. The 

26  Pitzer, J .  Chem. Phys., 1939, 7, 583. 
27 Guggenheim, ibid., 1945, 13, 253 ; Austral. Review P w e  Appl.  C’hem., 1953, 3, 1. 
28 Cook and Rowlinson, Proc. Roy. SOC., 1953, A ,  219, 405. 
29 Byk, Anr~.  Physik, 1921, 66, 167 ; 
30 de Boer et al., Physica, 1948, 14, 139, 149, 520, 1101. 
31Hammol, J .  Chem. Phys., 1950, 18, 228. 
82 Sydoriak, Grilly, and Hammel, Phys. Review, 1949, 75, 303. 
SSFriedman, White, and Johnston, J .  Ghem. Phys., 1951, 19, 126. 

E(r )  = &+f(G&) * (5) 

A _= hm-l/2~-1E-l/2 

1922, 68, 161. 
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departures from the equation of perfect gases are seen to be considerable. 
(Many attempts have been made to fit empirical equations to these curves,3* 
but, although of some practical importance, these contribute little to our 
understanding of the forces resconsible for the imperfection of gases.) The 

F I G .  4 
(Not to scale.) The equation of state of a gas. 

of illcreasing tempera,tures. 
tico-phnse region. 

C'urves 1-12 are isotherms at a series 
The third is  the critical isotherm, which just touches the shaded 

The eighth i s  the Boyle-point isotherm, at which temperature the seconrl 
virial coe@cient vanishes. 

calculation of the equation of state of a gas a t  densities below that of the 
saturated vapour is one of the few problems in the statistical mechanics of 
interacting molecules which can be solved e ~ a c t l y . ~ - ~ >  35 The solution 
leads to an open equation o f  state 

* ('i) 
where B, C, D, etc., are the second, third, fourth, etc., virial coefficients. 

PV/RT = 1 + B/V  + C/V2 + DlV3 + . * .  

FIG. 5 
The functiota f of equatioia (S), at a low temperature ( 1 )  arid 

They are functions of  the tlemperature but not of 
molecules are non-interacting point particles, all the 
For real molecules exact expressions may be obtained 

a high temperature (2). 

the density. If the 
coefficients are zero. 
in terms of the inter- 

molecular energies. 

Vol. 1 ; Beattie and Stockmayer, Rep. Progr. Physics, 1940, 7, 195. 

Ch. 16. 

The Coefficients are- of the greatest importance as they 
9 4  Partington, " Advanced Treatise on Physical Chemistry ", Longmans, 1960, 

35 Rushhrooke, " Introduction to  Statistical Mechanics ", Oxford Univ. Press, 1949, 
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are the primary source of most accurate knowledge about intermolecular 
forces. Simple expressions may be written for the second and third co- 
efficients, B and C. I€ E(r12) is the energy of interaction of two molecules, 
1 and 2, when separated by a distance r12, a function f12 may be defined by 

f 1 2  = 1 - exp r - -W,2) /kTl  - * (8) 
This function is sketched in Fig. 5 .  Then B and C are given by the follow- 
ing expressions, where tlhe integrations are taken over all values of the 
separations rI2,  etc., 

B = 23zN f12 r:2 dy,, . * (9) s 
(If the molecules are not spherical, further integrations must be made over 
all orientations.) It can be seen that B is a measure of the interaction of a 
pair of molecules and C of the simultaneous interaction of three molecules. 
Virial coeacients are not easily measured, for the terms they contribute to 
the right-hand side of equation ( 7 )  are small. Little is known, experiment- 
ally or theoretically, about the coefficients above C. Guggenlieim 27 has 
recently reviewed the experimental results for B and C and shown that, 
for simple molecules, they conform well to the principle of corresponding 
states, and so the potential energies must all be of one kind, as in equation (5 ) .  
More detailed information about the intermolecular forces may be had by 
evaluating the integrals of equation (8) for various " model " potentials and 
then comparing the observed and calculated values. Many such calcula- 
tions have been made. Probably the most useful, at  present, are those 6,  36 

for the potential of equation (3). The calculated curves are shown in Fig. 6, 
together with some experimental points for argon.37 The agreement is 
better for B than it is for C. This is always the case, for C is both harder 
to measure and is much more sensitive to slight variations in the shape of 
the potential energy curve. The virial coefficients by themselves will not 
determine the shape of the energy curve but, if its shape is known, or chosen 
on other evidence, then they will determine the parameters of length and 
energy with some precision. Parameters derived from equation (3) are 
listed in the Appendix. 

Since equation (3) is a special case of equation (5), it follows from the 
principle of corresponding states that there is, for such molecules, a universal 
relation between the critical volume and (No3) ,  and between the critical 
temperature and (~/k). It is found empirically for the rare gases and other 
simple molecules that these relations are approximately 

V c  = 1-50b,, where b, = (2/3)nNo3, 
T, = 1*25(~/k) . - (11) 

3sBeattie and Stockmayer, J .  Chern. Phys., 1942, 10, 476;  Bird, Spotz, and 

5 7  Michels, Wijker, and Wijker, Physica, 1949, 15, 627. 
Hirschfelder, ibid., 1950, 18, 1395. 
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FIG. 6 
Experimental values of the second and third virial coeffiients of argon and ammonia.  
T h e  calculated curves for argon are for an energy of the f o r m  of equation (31, and those for 
ammonia for u similar energy with the addition of a dipole-dipole term ( p  = 1 . 4 7 ~ ) .  

No close theoretical check is available for these figures since there is no 
exact statistical theory of the critical point. 

If the molecules are polar then a first approximation to their potential 
energies is obtained by adding to equation (3) a term which represents the 
interaction of their dipoles. The second 38 and third 39 virial coefficients 
have been calculated for this model and are shown in Fig. 6 for a molecule 
with the dipole moment of ammonia. 

The physical meaning of B and C may be seen by comparing Fig. 5 and 
Fig. 6. Here the greatest 
contribution to the integrals comes from the repulsive forces, at small 
separations where f is positive. These forces cause the pressure to be higher 
than in a perfect gas, as would be expected. At lower temperatures B 
becomes negative. The attractive forces (region o f f  negative) now pre- 
dominate, and cause the pressure to diminish as clusters are formed. How- 
ever, the coefficient C remains positive, and in fact increases, before finally 
becoming negative at  very low temperatures. The positive sign of C 
means that the simultaneous association of two molecules 1 and 2 with a 
third molecule, 3, is hindered rather than helped by the mutual interaction 
of 1 and 2 ; for the independent associations of 1 with 3, and 2 with 3, are 
represented by the second virial coefficient. It is seen that this hindering 
effect is larger for polar molecules than for non-polar, because of the 

38 Stockinayer, J .  C?&em. Phys., 1941, 9, 398 ; Rowlinson, Truns. Ii'araday Soc., 

38 Rowlinson, J .  Chem. P?qs., 1951, 19, 827. 

At high temperatures B and C are both positive. 

1949, 45, 974; 1951, 47, 120. 
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dependence of the dipole energy on the orientation. A group of three 
polar molecules cannot be arranged so that the total energy is as low as is 
possible iii three separate pairs. 

The virial expansion, equation (7), is only useful a t  relatively low pres- 
sures because of the difficulty both of measuring and computing the higher 
coefficients. The point a t  which the series ceases to converge, and therefore 
the theoretical limit to its validity, is close to the condensation point. 
Here the clusters become so large that they contain an appreciable fraction 
of the molecules in the assembly, and the individual coeficients then depend 
on the ciensity as well as on the temperature. Unfortunately the nature 
of this dependence is not understood. At  very high temperatures and 
pressures, such as are reached in explosions, (pV /RT)  becomes very large, 
and t,he virial expansion less useful. Under t8hese conditions the molecules 
are forced together so violently that their electronic shells are considerably 
distorted. The mean increase in the kinetic energy of the electrons a’nd 
nuclei, from that in t’he ideal gas state, is given by 

A T  -- 3A(PV) - AU . 
where Au is the change in total energy. The right-hand side of this equation 
is calculable from compressibility measurements. Michels, de Boer, and 
Bijl 4o have shown that the increase may be considerable. At 150” c and 
3000 atmospheres A T  is 8 kcal./mole for carbon dioxide. Crude theoretical 
calculations of this increase have been made by considering the change in 
the wave-functions of simple systems, such as If and H2+, when confined 
in an energy “ box ” whose size is the mean volume per molecule.4f These 
calculations agree as well as can be expected with the experimental results 
and Cottrell and Paterson 4 2  have recently based upon them an equation 
of sta’te which is of use in interpreting the behaviour of exploding gases. 

The transport properties of gases.-The transport properties of a gas or 
gas-mixture are measured by the coefficients of viscosity, thermal con- 
ductivity, and the various coefficients of diffusion. Such coefficients 
measure, respectively, the rate of transfer through the gas of niolecular 
momentum, energy, and mass. They are the simplest “rate  processes’’ 
in a gas, and so may be treated theoretically in a much more detailed way 
than any chemical reaction. While the ra#te of a reaction is determined 
primarily by the inter-atomic forces within the molecules, the transport 
properties are determined by the weaker forces acting between them. If 
the intermolecular energies have not spherical symmetry, then rotational 
and vibrational energy may be exchanged in collisions. This complicates 
the theoretical treatment of the transport properties, but fortunately such 
energy exchange seems to affect seriously only the thermal conductivity. 
The coefficient of viscosity (and those of diffusion, which are discussed later, 
in the section on Solutions) appears to measure an energy averaged over all 

40 Michels, de Boer, and Bijl, Physica, 1937, 4, 981. 
*l Michels and de Groot, {bid., 1950, 16, 183 ; Cott.rel1, Trans. Furaday Soc., 1951, 

4 2  Cottroll and Pctterson, Proc. Roy. ~S’OC., 1952, A,  213, 214. 
47, 337. 
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orientations, and so gives information about the variation of the energy 
with distance. This information is a useful supplement to that obtained 
from the virial coeflicients, for the two properties depend in a very different 
way on the potential energy. At the temperatures at which it is usually 
measured, the second virial Coefficient is mainly a measure of the size of 
the attractive forces. The coefficient of viscosity is determined by the 
angle of deflection of two colliding molecules and so depends to a much 
greater degree on the repulsive part of the potential. The two properties 
are therefore complementary and between them provide a, severe test of 
any proposed potential energy curve. 

The simple treatment of viscosity in terms of the mean free path and 
similar concepts is not accurate, even for molecules which are rigid spheres, 
and breaks down completely for real molecules whose potential energies 
are continuous functions of their separations. However, an exact treatment 
is possible, though long and difficult. A full account is given in the mono- 
graph of Chapman and Cowling,43 and more elementary accounts by Jeans 4 4  

and K e n n ~ ~ r d . , ~  The correct expression for the coefficient of viscosity for 
spherical molecules, apart from some very small correction terms which 
may be ignored, is 

where m is the molecular mass and x(x,y) is the angle of deflection of two 
molecules in a collision characterised by the two parameters x and y, which 
are the ratio of the relative kinetic energy to kT and the distance between 
the two lines of centres before the collision. The integration is an averaging 
over all collisions. The expression of x in terms of x, y, and the inter- 
molecular energy is a straightforward problem in classical mechanics. If 
energies are of the form of equation ( 5 ) ,  then equation (13) and the principle 
of corresponding states implies that the function [q( Yc)2'3N1/3(MRT)-1/2] 
is a universal function of T/T,. This is found to be so 46 for the viscosities 
of such simple gases as Ne, A, Xe, N,, 0,, CO, and CH,, again showing 
that their potential energies are of the form of equation (5). If more detailed 
information is wanted about the potential energy, then, as in the case of 
the virial coefficients, model potentials must be inserted into equation (13) 
and the integrations carried out. However, in this case, the calculations 
are extremely laborious, and for many years the energies were chosen more 
for their mathematical convenience than for their physical reality. The 
only calculations now worth consideration are those for an 8-and-4 inverse 
power p~tent ia l ,~ '  a, 12-and-6 inverse power potential 48 [that is, equation 

43 Chapman and Cowling, " Mathematical Theory of Non-Uniform Gases ", Cam- 

4 4  Jeans, " Kinetic Theory of Gases ", Cambridge Univ. Press, 1940. 
4 6  Kennard, " Kinetic Theory of Gases ", McGraw-Hill, 1938. 
4 6  Rowlinson and Tot~?lley, Trans. Furuduy Xoc., 1953, 49, 20. 
47 Has& and Cook, Proc. Roy. Soc., 1929, A, 125, 196. 
48 The most extensive of four independent calculations are those of HirschfeIder, 

bridge Univ. Press, 2nd edn., 1951. 

Bird, and Spotz, J. Chem. Phys., 1948, 16, 968; Chem. R e v z ' e w ,  1949, 44, 205. 
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(3)], and a ‘’ square-well ” potential 49 in which the molecule is represented 
by a hard core surrounded by a rectangular potential trough. Any of 
these potentials is capable of representing either the second virial coefficient 
or the coefficient of viscosity over quite wide temperature ranges, but only 
equation (3) is capable of representing both coefficients with one pair of 
parameters. This agreement is strong evidence that the form of potential 
of equation (3) is close to the correct one. Hirschfelder, Bird, and Spotz 48 

compare the parameters derived from the two properties. The empirical 
equations connecting the parameters derived from the viscosity with the 
critical constants me 46 

‘Yc = l*46bo 

T, = 1*28(~/k)  . ’ (14) 
These equations are virtually the same as those [equations (9)] derived from 
the second virial coefficient, so illustrating the agreement which can be 
obtained with the potential energy of equation (3). 

Two important problems in the theory of the transport properties of 
gases are still unsolved. The viscosity of a polar gas cannot yet be ex- 
pressed in terins of its dipole moment and intermolecular energy, in the way 
in which its virial coeEcients can. This difficulty is due to the inelastic 
nature of collisjons between molecules with non-central force fields. The 
second problem is an understanding of the effect of ternary and higher- 
order collisions on these properties, comparable, say, with our knowledge 
of the third virial coefficient. In the derivation of equation (13) it is sup- 
posed that all but two-body collisions may be ignored. Within the limita- 
tions of this assumption, theory requires that the viscosity is independent 
of the pressure. It is not so 
at very low pressures, when the mean free path is comparable with the size 
of the apparatus, nor at high pressures when ternary collisions cannot be 
neglected and when the ratio of the diameter of a molecule to its mean 
free path is not negligible. The effect of very low pressures is well under- 
stood 45 but not the effect of high pressures. gave an approximate 
treatment of the special case of molecules which are rigid spheres, but his 
results do not generally fit the facts, as might be expected for such a crude 
model. 

Liquids.-The liquid state lends itself most readily to exact experimental 
observation, but it is the most difficult of the three t o  treat theoretically. 
A t  present the observed properties of a liquid cannot be used to give any 
direct information about the intermolecular forces. The problem rather 
is to develop a statistical theory which will esplain the multitude of experi- 
mental observations in terms of intermolecular forces derived from the 
properties of gases and solids. 

The high density of the liquid state and the regularities of its structure, 
as revealed by X-ray diffraction patterns, show its affinity to the solid state. 
Most statistical treatments have been based on these similarities. However, 

This is so at  pressures near atmospheric. 

Enskog 

49 Holleran and Hulbert, J. Chem. Phys,, 1951, 19, 232. 
50 See ref. 43, Ch. 16. 
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as Fig. 3 shows, there is a continuity of state between liquid and gas, which 
makes it certain that a satisfactory statistical treatment must consider the 
fluid state as a whole. Only over a restricted range of volume and tempera- 
ture can this state subdivide into two fluid phases. 

Eyring, 51 and Lennard- Jones and Devonshire 52  are mainly responsible 
for the lattice, or “ disordered solid ”, model of the liquid state. They cal- 
culated the thermodynamic properties of a liquid by supposing that each 
molecule is confined to a small cell by its nearest neighbours. Lennard- Jones 
and Devonshire found the partition function for the motion of the molecule 
within its cell by using the potential of equation (3). (The partition 
function is the value of wEjkT integrated over the cell, where E is the energy 
of interaction with the neighbours.) By neglecting the possibility of mole- 
cules exchanging cells they were able to calculate tlhe partition function, 
and so the equation of state, of the whole assembly. Such a model shows 
a gas-liquid transition at all temperatures below ( k T / s  = 1.2). Above that 
temperature there is no tra.nsition. Thus qualitatively the model behaves 
as a real fluid. Qmntitatively the agreement is not good. The critical 
temperature comes at  about the correct value of ( s / k )  but neither the critical 
pressure and critical volume nor the vapour-pressure curve is given 
correctly. The model is quite unacceptable at low densities, as would be 
expected from its derivation from the solid state. For example, it predicts 
a vanishing second virial coefficient a t  all temperatures. There have been 
many ingenious attempts to improve this treatment by allowing the existence 
of unoccupied cells, whose number and size depend on the volulne and 
temperature. These modifications can be made intuitively more attractive 
than the original theory and have the merit of giving a reasonable treatment 
of t’he gas phase at low densities.53 However, none of them gives satisfactory 
values for the critical constants and vapour-pressure curve. De Boer surnmar- 
ised their successes and failures a t  a recent discussion of the Royal Society. 54 

An entirely different approach 5 5  to the theory of the liquid state was 
initiated by Yvon and developed by Kirkwood and by Born and Green. 
Here the fluid phase is treated as a unity and the whole theory is on a more 
sound foundation. It is possible to define first, second, third, etc., distri- 
bution functions for the fluid; there being as many of these as there are 
molecules in the assembly. The first is simply the density, the second 
measures the probability that a pair of molecules are a given distance apart, 
the third is a similar probability for a group of three molecules, and so on. 
(The second is the pair or radial distribution function obtained from the 
X-ray diffraction patterns of liquids.) The theory rests upon the fact that 
a set of equations may be obtained, each giving the rtth distribution function 

51Eyring, J. Chem. Phys., 1936, 4, 283. 
52 Lennard-Jones and Devonshire, Proc. Roy. SOC., 1937, A, 163, 53. 
5 3  Rowlinson and Curtiss, J .  Chem. Phys., 1951, 19, 1519. 
51 de Boer, Proc. Roy. Xoc., 1952, A, 215, 1-66. 
55 (a) Kirkwood and Boggs, J .  Chem. Phys., 1942, 10, 394 ; Kirkwood, Maun, 

and Alder, {bid., 1950, 18, 1040; Kirkwood, Lewinson, and Alder, ibicl., 1952, 2Q, 
929. (b) Born and Green, “Kinetic Theory of Liquids”, Cambridge Univ. Press, 
1949. 
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in terms of the (n + 1)th. If soluble, this set of equations would give 
exactly the equation of state and other thermodynamic properties of gases, 
liquids, and solids. However, it is not soluble a t  present and so the so- 
called " superposition approximation " has been introduced. It is supposed 
that the probability of a given array of three molecules is simply related to 
the " superposition " of the probabilities of the three-pair configuration 
occurring independently. In  this way the set of equations is " closed ", 
and the equation for the pair distribution function is soluble without a 
knowledge of the triplet and higher functions. Even so, its solution is 
exceedingly difficult and has only been achieved by numerical methods. 
The results so far obtained show that this treatment is superior to the cell 
theories a t  densities up to and including the critical. At higher densities 
the superposition approximation becomes less accurate. This is well illus- 
trated by Rushbrooke and Scoins 56 who have shown that if this theory, 
with the superposition approxiination, is used to calculate the virial co- 
efficients, then the second and third are givcn correctly but the fourth is not. 
An exact theory of the liquid state is still a distant goal. 

While the equilibrium properties are still so imperfectly understood it is 
not to be expected that the theory of the transport properties is very far 
advanced.54 Neither the treatment of the cell model by Eyring 57 nor that 
of the pair distribution function by Kirkwood 58 has yet given any quanti- 
tative account of the part that intermolecular forces play in the transport 
properties of liquids. However, the latter has established the useful result 
that the coefficient of shear viscosity of any fluid, gas, or liquid consists of 
two parts, which may be called a " kinetic " term and an " intermolecular 
force " term. These correspond to the carrying of molecular momentum 
by the motion of the molecules themselves and by the direct action of their 
intermolecular energies, which enable a force to be transmitted over larger 
distances than the molecules actually move. Only the first term is important 
in a gas at low pressures while the second is predominant a t  the density of 
a normal liquid. As the 
two terms are quite different in form, there is no reason to expect much 
correlation between gas and liquid viscosities, as indeed, is the case. 

Solids.-The physical properties of a simple solid formed of monatomic 
molecules (excluding metals) or univalent ions can be expressed rigorously 
in terms of the intermolecular energies, as long as the temperature is close 
to absolute zero. Conversely, measurements of these properties can give 
direct and accurate information about the potential energy curves, or, 
more preciscly, about their shape and depth near the position of minimum 
energy.59 If the molecules are not spherical then the situation is different. 

66  Rushbrooke and Scoiiis, Phil. Mug., 1951, 42, 582 ; Proc. Roy. Soc., 1963, A, 
216, 203. 

57 Glasstone, Laidlor, and Eyring, " The Theory of Rate Processes ", McGraw-Hill, 
1941. 

Kirkwood, Buff, and Green, J. Chew. Phys., 1950, 18, 901, and earlier papers. 
See also ref. 55 ( 6 ) .  

Fowler, " Statistical Mechanics ", Cambridge Univ. Press, 2nd Edn., 1936, pp. 

In  the supercritical fluid both are important. 

312-337. 
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The structure, lattice energy, etc., of a crystal of polyatomic molecules, 
unlike the properties of the fluid phases, depend on the fine details of the 
variation of the intermolecular energy with the orientation of the niolecules. 
Only rarely does a knowledge of the crystal constants help in determining 
the potential energy curve. This situation may improve as more becomes 
known about the forces between polyatomic molecules, but before much 
systematic progress can be expected there is one theoretical problem that 
must be solved. This is to obtain a general relation between the symmetry 
of an intermolecular energy surface and the symnietry of the corresponding 
crystal structure. At present, however, almost nothing is known about 
such relations, and therefore only the simplest structures, those of the rare 
gases and the alkali halides, are discussed in this section. 

The forces between the atoms of the rare gases are entirely independent 
of their orientation, indeed the concept of orientation has no meaning here, 
and so it is possible to calculate a priori the structure of lowest energy. 
Lennard-Jones and Ingram 6o showed that the face-centred cubic lattice 
is more stable than the body-centred, and both are more stable than the 
simple cubic lattice. Prins, Durnork, and Tjoan have, however, recently 
found that, for all reasonable forms of the intermolecular energy, the 
hexagonal close-packed lattice is even more stable than the face-centred 
cubic. The energy difference is small, about 1 part in 14,000, and it is 
observed experimentally that the rare gases crystallise in the less stable 
structure. Several effects could produce 
energy differences of this size. Possibly the zero-point energies of the two 
structures differ appreciably, or possibly the energy of the assembly of 
N atoms may not be accurately the sum of the energies of the N ( N  - 1)/2 
intermolecular pairs, as has been assumed in the calculations. This last 
effect has been discussed by Axilrod and Teller,62 who find that there may 
be differences of up to 9% between the actual energy of a cluster of three 
molecules and the energies of the three pairs taken separately. 

However, since the face-centred lattice is an experimental fact , measure- 
ments of the crystal spacing and the latent heat of sublimation (both cor- 
rected for the zero-point energy and extrapolated to absolute zero) c m  be 
used to obtain precise information about the position and depth of tho 
minimum of the energy curve. A thorough treatment of this kind has been 
given by Corner 63 who, by combining information derived from the crystals 
with that derived from the second virial coefficients, has calculated energy 
curves for the rare gases which are probably the most reliable ltnown. At  
temveratures well above absolute zero, and towards the melting point of 
the solid, it becomes increasingly difficult to relate the interniolecnlar energy 
and the physical proper tie^.^^ 

The attractive forces hitherto discussed pltLy a very minor role in ionic 

The reason for this is not known. 

60 Lennard-Jones and Ingrain, Proc. Roy. SOC., 1925, A, 10'7, 636. 
81 Prins, DumorB, and Tjoan, Physica, 1952, 18, 307. 
63 Axilrod and Teller, J. Chem. Phys., 1943, 11, 299; 1951, 19, 710, 724. 
63 Corner, Trans. Faracluy SOC., 1948, 44, 914. 
6 4 R i ~ e ,  J .  Chem. Phys,, 1944, 12, 289; 1946, 14, 321, 518. 



ROWLTNSON : INTERMOLECVLAR FORCES AND PROPERTIES OF MATTER 185 

crystals. The stable configuration of these structures is determined prim- 
arily by the balance between the repulsive (overlap) energy and the simple 
Coulomb energy between the ions. The NaCl lattice is the most stable 
for uni-univalent salts if the repulsive energies of each of the three kinds 
of interaction (+ $-, -{--, and --) are the same, that is, if the ions are 
the same " size ". If the dispersion energy is not negligible, or if the 
repulsive energies are not the same, then this lattice may not be the most 
stable. In  this way the adoption of the casium chloride structure by certain 
of the alkali halides was explained by Mayer and others.g5 It is possible, 
for these simple crystals, to calculate the lattice energy directly from the 
lattice spacing, the ionic polarisabilities, and the coefficient of compressibility. 
The electrostatic energies can be summed over the whole crystal by the 
method of Madelung, or some modification of it.59 The ionic polarisabilities 
give approximate values of the dispersion energy by using the equation of 
Slater and ICirkwood,l and the curvature of the potential at its minimum 
may be derived from the coefficient of compressibility. This curvature 
enables the shape of the repulsion energy to be found. This varies as re8 
or Y - ~  for the alkali halides. This is a significantly lower power of Y than 
the r-12 used for the rare gases. The difference is due mainly to the fact 
that the minimum of the energy occurs at  a smaller separation, owing to 
the great strength of the ionic energy. This is illustrated in Pig. 2 where 
the energy of interaction of two argon atoms is compared with that of the 
iso-electronic pair, K+and C1-. The energy scales differ by a factor of 250. 
The differences in the shapes and positions of the minima are very obvious. 
In both cases an exponential repulsion is more satisfactory, for this will fit 
the curves at both separations. 

Solutions of non-electrolytes.-The study of solutions G 6  is of interest 
from two points of view. In the first place, it is the only way of investigating 
the forces between molecules of different species. It is not usually possible 
to measure the effects of these forces directly, for the properties of a solution 
generally depend on the difference between these forces and some average 
of the forces between molecules of like species. However, two special cases 
in which the effects of the unlike forces may be measured directly are noted 
below. In the second place, the phase equilibria of solutions have many 
interesting features which are not encountered with pure substances. Two 
fluid phases of a pure substance in equilibrium at a given pressure and 
temperature differ only in their densities. In  solutions the difference can 
also be one of composition, and this extra degree of freedom is responsible 
for a host of new phenomena. The physical explanation of some of tlzese 
is far from simple. Azeotropy, incomplete miscibility of liquids, and the 
occurrence of critical solution points, retrograde condensation, and the 
solubility of solids in compressed gases, are examples. Most work on 
solutions, both experimental and theoretical, has been concerned with this 

c 5  Born a i d  Mayer, 2. Physik, 1932, 75, 1 ; Mayer and Helmholtz, ibid., p. 19. 

6 6  ( u )  Hildebrand and Scott, " The Solubility of Non-Electrolytes ", Rheinhold, 
See also ref. 1. 

3rd Etln., 1950. ( b )  Discuss. Faruday Soc., 1953, 15. 
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second aspect, that is with trying to measure and understand these new 
properties, and has not been concerned directly with the measurement of 
intermolecular forws. 

Tn a mixture of’ tlwo components, i andj, there are three kinds of naolecular 
interaction to be considered. These are denoted here by the subscripts ii ,  
ij, and jj’. If there are only dispersion forces between the niolecules then 
the parameters of the ij interaction usually lie between those of the ii and 
the jj. Measurements on imperfect gases are the most direct way of finding 
the relative sizes of the three sets of parameters.67, 68 These have shown 
that for simple molecules the parameters of an energy of the form of equa- 
tion (5) are related approximately by the equations, 

Here the emphasis is on the first aspect. 

These equations are empirical but seem to apply to a surprisingly wide 
range of molecules. If the three interactions can be expressed in the 
common form of equation (5), then it seems as if there should be some 
extension of the principle of corresponding states which would cover mixtures 
as well as pure substances. Such an extension may be made exactly if the 
mixture is a gas a t  such low density that all virial coefiCicients above the 
second may be neglected.68 The extension cannot be made exactly a t  
higher densities where clusters of three molecules and more contribute to 
the imperfection of the gas. However, an approximate extension may be 
made 69 if the ratios of the three parameters are close to unity. Further- 
more, if this condition is satisfied, Longuet-Higgins ’* has shown that the 
principle of corresponding states niay be extended to  all solutions-solid, 
liquid, and gas, and even to the critical ~ t a t e . 7 ~  That is, the deviations 
from ideality of the thermodynamic properties of these solutions may be 
calculated from the thermodynamic properties of either of the pure coni- 
ponents and two dimensionless parameters, (2crij - aii - ojj)/aii and 
( 2 ~ ~ ~  - E~~ - &jj)/&ii, as long as these parameters are small. This condition 
is satisfied if equations (15) and (16) hold even roughly. This treatment 
allows rigorous proofs of some statements about liquid solutions which are 
intuitively obvious. If qj is smaller than the arithmetic mean of E~~ and Ejj 

then the solution will show positive deviations from Raoult’s law. If ~ i j  

is smaller than both E~~ and Ejj then the solution will form a positive a,zeotrope. 
This is quite natural, for if the ij forces are weak then the volatility of the 
mixture will be greater than that of the pure components. Similarly, if 
E~~ is large there will be negative deviations from Raoult’s law and, in the 
extreme case, negative azeotropy. It is found that many more solutions 
show positive deviations than negative, and so .zij is generally less tlinn the 

67 Hirschfelder and Rossveare, J. Phys. Chenz., 1934, 43, 15. 
68 Guggenhaim and McGlashan, Proc. Roy. Xoc., 1951, A, 206, 448 ; Fox and Lam- 

69 Rowlinson, Sunmer, and Sutton, Tratw. Faradag SOC., 1934, 50, 1, 
70 Longuet-Higgins, Proc. Roy. Soc., 1951, A, 205, 247. 
7l Cook and Longuet-Higgins, ibid., 1951, 209, 28. 

bert, ;bid., 1951, 210, 557. 
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arithmetic mean of E~~ and cjj. Probably solutions of spherical molecules 
never show negative deviations. 

This approach to the theory of liquid solutions is limited by two 
restrictions. It is not accurate if the ratios of the three energies and dis- 
tances are not close to unity and, of course, it is not applicable if the three 
potentials cannot be put in the form of equation ( 5 ) .  In practice, the last 
restriction means that none of the potentials must depend appreciably on 
orientation. Unfortunately the majority of solutions fall into one or both 
of these excepted classes, even if the extreme case of polymer solutions is 
excluded. At present, theories of such solutions are based upon cell models 
of the liquid state.72? 73 Their qualitative success is considerable, but 
quantitatively these theories can be no better than the corresponding theory 
of pure liquids.74 The most striking effect of dissimilar energies and strong 
orientational forces is the incomplete miscibility of some liquids. Two 
liquids may be immiscible over the whole liquid range from melting point 
to critical point, or they may show one or two critical solution points. 
Upper critical temperatures, above which the liquids are completely miscible, 
are more common than lower critical temperatures. A few systems, of 
which nicotine-water is the classical example, show both. It appears that 
the causes of the two critical points are quite different. An upper critical 
point can occur even with spherical molecules if the ratio (2cij - cii - Ejj)/kT 
is large and negative, that is, when the ii and j j  interactions are favoured 
and when the thermal agitation is only just great enough to keep the mixture 
homogeneous. At  lower temperatures, there is separation into two phases. 
Almost every mixture of a hydrocarbon and a fluorocarbon shows an upper 
critical temperature, and in two cases it has been confirmed that cij is un- 
usually small by indirect measurements of the heats of mixing.75 An upper 
critical temperature is often shown by a mixture of one polar and one 
non-polar substance, for example, the system aniline-cyclohexane. Lower 
critical temperatures are rare and apparently occur only when the ij inter- 
action can form a hydrogen bond, which is a particularly strong force and 
one that varies rapidly with changing orientations. Theory indicates that 
mixtures of spherical molecules cannot show a lower critical point.72Ct 76 

The ij hydrogen bond leads to a loss of rotational entropy 77 which allows 
the liquids to mix only if the temperature is low enough for the bond to be 
stable ; the energy change can then compensate for the loss of entropy. 

The non-equilibrium properties of a liquid mixture are little understood, 
but those of a gas mixture are quite tractable. The viscosity of the mixture, 

7 2  (a)  Guggenheim, “ Mixtures ”, Oxford Univ. Press, 1952. ( b )  Prigogine and 
Mathot, J .  Chem. Phys., 1952, 20, 49. ( c )  Rowlinson, Proc. Roy. Soc., 1952, A ,  214, 
192. 

73 Munster, Trafis. B’araday SOC., 1950, 46, 165 ; Barker, J .  Chern. Phys., 1952, 
20, 794, 1526; Tompa, ibid., 1953, 21, 250. 

7 4  Rowlinson, ref. 66(b). 
7 6  Simons and Dunlap, J .  Chem. Phys., 1950, 18, 335 ; Simons and Mausteller, 

76  Prigogine, ref. 21 ; Bellemans, ref. 66(b). 
77 Copp and Everett; Barker and Fock, ref. 66(b) .  

ibid., 1952, 20, 1516. 
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like most of the equilibrium properties, depends upon 811 three kinds of 
interaction and so does not give directly the size of the i j  parameter~.~B 
However, if the molecules are similar in energy, size, and mass then the 
variation of the viscosity with composition shows immediately 46 the devia- 
tions from the empirical cquations (15) and (16). Binary mixture:: chosen 
from N,, 0,, NO, and CO conform closely to these equations. 

The rate of diffusion of one gas into another is a more useful property 
as it depends, to a very good approximation, only on the i j  forces and not 
on the ii or thejj.  Diffusion coefficients are difficult to nieasurc accurately 
but, as iiiore measurements are made over an adequate range of temperature, 
will probably become the most useful way of measuring the ij forces.48 
Direct tests of equation (15) and (16) may be made by comparing these 
coefficients with the coefficients of self-diffusion, found by using isotopic 
tra~ers.4~9 78 

A temperature gradient in a gas mixture causes some separation which 
is measured by the coefficients of thermal diffusion.79 There is no simple 
explanation of this separation. It was not detected experimentally until 
after its prediction on purely theoretical grounds by Chapman and Ensk0g.4~ 
However, many experimental investigations have now been made, especially 
since, in 1938, Clusius and Dickel showed that thermal diffusion, when 
combined with convection, provided one of the most rapid ways of separating 
isotopes. These coefficients are much more sensitive than the other trans- 
port properties to small changes in the shape of the intermolecular energy 
curves, and so provide a severe test for any molecular model. However, 
like ordinary diffusion coefficients, they are hard to measure accurately, and 
all that can be said a t  present is that the energy of equation (3) is the most 
successful that has yet been fried. 79 Calculations of these coefficients for 
an energy with an exponential repulsion are now being made.81 

Solid solutions have not been discussed in this section. It is rare to 
find two solids, other than metals, which are at all miscible. The high 
degree of order and the rigidity of a crystal lattice will allow the replacement 
of a molecule of one species by one of another only if their potential energy 
curves are almost identical. Moreover, even when a solid solution is formed 
it is difficult to be sure that it is homogeneous and at  equilibrium, and so 
thermodynaniic measurements are hard to make. However, one system in 
which the solid state plays a part has recently aroused some interest. This 
is the equilibrium between a pure solid, its vapour, and an added gas. The 
effect of the added gas on the apparent vapour pressure of the solid may be 
expressed in terms of certain of the virial coefficients. The first term is 
B,,, the second coefficient for the interaction in the gas phase of one molecule 
from tlhe solid and one of the added gas. Measurements of this coefficient 
thus provide a second way of measuring directly the effects of the ij forces.82 

78 Amdur, Irvine, Mason, and Ross, J. Chem. Phys., 1952, 20, 436. 
79 Grew and Ibbs, " Thermal DiSusion in Gases ", Cambridge Univ. Press, 1952. 
80 hTaturwiss., 1938, 26, 546. 
81 Hirschfelder, personal communication. 
82  Robin and Vodar ; Ewald, Jepson, and Rowlinson, ref. 66(b). 
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Again equations (15) and (16) are found to be approximately true, even 
for such dissimilar molecules as ethylene a'nd naphthalene. 

Conclusion 
'I'he object of a molecular theory of the physical properties of matter is 

to give exactly the relations between these properties and intermolecular 
forces. At present this can only be done for the two extreme cases of gases 
at  low densities and solids at low temperatures-the limits of complete 
disorder and complete order. Experimental knowledge of intermolecular 
forces is derived from observations of these extreme cases, and even here 
the interpretation of the results is difficult for all but moiiatomic systems. 
Our understanding of intermediate cases, and in particular of the liquid 
state, is not yet far enough advanced for the direct interpretation of the 
properties in terms of the intermolecular forces. However, many less com- 
plete correlations, which give some information about these forces, have 
been based upon secure statistical foundations. Probably tlie most useful 
of these are the principle of corresponding states, its recent extension to 
mixtures, and attempts to relate deviations from this principle to the inter- 
molecular forces. 

It is doubtful if much more progress will be made in the direct inter- 
pretation of the behaviour of monatomic systems until there is an exact 
statistical treatment of the liquid phase. More rapid progress can reason- 
ably be expected in bringing the interpretation of polyatomic systems up 
to the standard of that of monatomic systems. 

I wish to thank Imperial Chemical Industries for a Research Fellowship, 
during the tenure of which this review has been written. 

Appendix 
The " collision diameter " of a molecule is a distance often used to 

calculate collision rates in a gas by those working on the kinetics of reactions. 
The values used are generally derived from the viscosities of the gases by 
means of an inaccurate equation and by assuming that the molecules are 
rigid spheres. In most cases these approximations do not matter much 
as little more than the orders of magnitude of the collision rates are needed. 
However, it is probably worth while tabulating some collision diameters so 
that these calculations can be improved. 

The viscosity of a gas is a function of the average deflections of two 
colliding molecules [see equation (13)]. There is no simple relation between 
this quantity and the size of the molecules. A more useful measure of size 
in chemical kinetics would be a collision diameter which, when used in the 
usual equations, would give the number of collisions in which the centres 
of the molecuies approached nearer than some given distance. The distance 
of approach will probably be a more important factor than the angle of 
deflection in governing the rate of reaction. Fortunately one such diameter 
can be given at once for molecules with central force-fields, the diameter 
which is denoted cr in equation (3). Pig. 2 shows that the centres of two 
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molecules which collide head-on approach to a distance of (T or less, according 
to their kinetic energy. It can be proved more generally that all occasions 
in which the initial separation of the lines of centres of two approaching 
spherical molecules is less than 0 result in collisions in which t4he centres 
approach closer than cr, and vice uersa. Hence if (T is used in the usual 
expressions for the collision rates of rigid spheres there will be obtained 
the number of collisions in which the centres approach to  less than this 
distance. For collisions between two molecules of different species the 
arithmetic mean diameter of equation (15) is recommended. 

This diameter may be found from the second virial coefficient, from the 
viscosity [by fitting the experimental results to equation (13) with the 
appropriate values of the angles of deflection], or less exactly from the 
critical volumes by using equation (11) or equation (14). The last method 
is used only when the virial coefficient and the viscosity are not known over 
a wide enough range of temperature. The diameters in the first group in 
the Table below are mean values from the virial coefficients and the vis- 
cosities. Quanta1 corrections 
to equations (9) and (13) have been made for helium and hydrogen. The 
diameters in the second group are calculated from hhe critical volume by 
using the mean of equations (11) and (14), and the volumes recommended 
by Kobe and Lynn.83 The molecules in this group are far from spherical 
and the significance of (T is doubtful. However, it must be an average over 
all orientations and should give collision rates which are of the correct 
relative sizes. The values of cr are not very sensitive to the assumed form 
of the intermolecular energy. Strongly polar compounds cannot be included 
in these lists. 

For interest, values of Elk are also given. 

Group 1 
Helium (2.56 A, 10.2" K), Neon (2.78 A, 44.5" K), Argon (3.42 A, 120" K ) ,  
Krypton (3.61 A, 165" K), Xenon (4.0 A, 220" K), Hydrogen (2.93 8, 37" K), 
Nitrogen (3-68 8, 95" K), Oxygen (3.44 8, 118" K), Methane (3.85 A, 150" K), 
Carbon tetrafluoride (4.70 A, 153" K). 

Group 2 
Carbon monoxide (3.66 A), Carbon dioxide (3-73 A), Nitrous oxide (3.74 A), 
Ethane (4.30 A), Ethylene (4.05 A), Acetylene (3.92 A), Propane (4.75 A), 
Propylene (4.59 A), cycZoPropane (5.15 A), %-Butane (5.18 A), isoButane 
(5.20 A), n-Pentane (5.50 A), isoPentane (5.48 A), neoPentane (5.45 A), 
n-Hexane (5.82 A), cyeZoHexane (5.50 A), n-Heptane (6.1 1 A), %-Octane 
(6.40 A), Benzene (5.28 A), Toluene (5.55 A), Methyl ether (4.67 A), Ethyl 
ether (5.33 A), Chloroform (5.05 A), Carbon tetrachloride (5.28 A), Chloro- 
benzene (5.48 A), Carbon disulphide (4.50 A). 
The equivalent diameter of two colliding hydrogen atoms (3Z state) is 

shown by quanta1 calculations l2 to be 3.97 A. This great size is due to 
the unusually weak dispersion forces. 

The diameters in this Table are smaller than most of those commonly 
used in work on chemical kinetics. The latter probably correspond more 
closely with the equilibrium separations, that is, with the minimum of the 

83 Kobe and Lynn, Chem. Reviews, 1953, 52, 117. 
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energy curve in Fig. 3. These are about 12% greater than (I ; for example, 
the potential of equation (3) would give for the minimum, ethylene 4.6 and 
benzene 5.9 8. Probably the diameter cr is the more suitable of the two. 
The use of equilibrium diameters in the expression for the collision rate 
does not give the number of molecules which approach closer than the 
equilibrium separation. 

The correct way of calculating rates of diffusion from these diameters 
and the corresponding energies is given in the publications of Hirschfelder 
and his ** 

This is a property peculiar to  the distance CT. 




